skip to main content


Search for: All records

Creators/Authors contains: "Paranicas, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the average distribution of energetic electrons in Jupiter's plasma sheet and outer radiation belt near the magnetic equator during Juno's first 29 orbits. Juno observed a clear decrease of magnetic field amplitude and enhancement of energetic electron fluxes over 0.1–1,000 keV energies when traveling through the plasma sheet. In the radiation belts, Juno observed pancake‐shaped electron distributions with high fluxes at ∼90° pitch angle and whistler‐mode waves. Our survey indicates that the statistical electron flux at each energy tends to increase fromto. The equatorial pitch angle distributions are isotropic or field‐aligned in the plasma sheet and gradually become pancake‐shaped at. The electron phase space density gradients atMeV/G are relatively small atand become positive over, suggesting the dominant role of adiabatic radial transport at highershells, and the possible loss processes at lowershells.

     
    more » « less
  2. Abstract

    Saturn's magnetosphere has been extensively studied over the past 13 years with the now retired Cassini mission. Periodic modulations in a variety of magnetospheric phenomena have been observed at periods close to those associated with the emission intensity of Saturn kilometric radiation (SKR). Resulting from Rayleigh‐Taylor like plasma instabilities, interchange is believed to be the main plasma transport process in Saturn's inner to middle magnetosphere. Here we examine the organization of equatorially observed interchange events identified based on high‐energy (3–22 keV) H+intensifications by several longitude systems that have been derived from different types of measurements. The main question of interest here is as follows: Do interchange injections undergo periodicities similar to the Saturn kilometric radiation or other magnetospheric phenomena? We find that interchange shows enhanced occurrence rates in the northern longitude systems between 30° and 120°, particularly between 7 and 9 Saturn Radii. However, this modulation is small compared to the organization by local time. Additionally, this organization is weak and inconsistent with previous findings based on data with a limited time span.

     
    more » « less